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Introduction
The advent of various high-throughput genome analysis tech-
niques culminated in the early 2010s in massively parallel 
sequencing of common human cancers, to confirm suspected 
and identify new cancer-driving events by virtue of their recur-
rent dysregulation across multiple tumors and histotypes. The 
current version of the Catalogue of Somatic Mutations in Cancer 
(COSMIC; ref. 1) contains 723 genes. According to the UniProt 
database (2), their top ten molecular functions include the “usu-
al suspects”: cell surface receptors, protein kinases, transcription 
factors, etc. However, we were intrigued by the strong repre-
sentation of RNA-binding proteins (RBPs), which constitute 5% 
of all mapped COSMIC genes (Figure 1) — 65 total. We further 
limited these 65 entries to 42 that were listed as “reviewed” in 
COSMIC and to 14 further classified as drivers by the cBioPortal 
for Cancer Genomics (3–5) (Figure 2 and Supplemental Figure 1; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI151627DS1).

Collectively, they pertain to virtually all aspects of RNA metab-
olism, from synthesis to degradation. Thus, in the following pag-
es, we will focus on this highly curated list to ask whether and how 
their RNA-binding activities pertain to their oncogenic functions. 
For a much more comprehensive survey of RBPs, we refer the read-
ers to several excellent review articles (6–9). We also acknowledge 
that many mutations currently classified as “passenger” might still 
play causal, if more modest, roles in cancer (10). Lastly, many RBPs 

involved in cancer might be regulated exclusively at the level of 
expression (by chromatin modifications, noncoding RNAs, etc.) (11, 
12) and thus would not appear in the COSMIC database. Still, the 
14 genes selected for detailed analyses provide a useful representa-
tion of how RBPs might be functioning in the context of neoplastic 
transformation. Our key conclusion is that for most cancer-driving 
RBPs, RNA binding is either abolished (the classical loss-of-func-
tion phenotype) or carried out imprecisely, which can be described 
as the “low-fidelity” (LoFi) phenotype. One important feature of 
these LoFi phenotypes is that they affect many molecular targets 
indiscriminately, often resulting in “death by a thousand cuts,” as 
opposed to “death by the smoking gun.”

Transcription: DNA versus RNA binding
While the involvement of transcription factors (TFs) in cancer is 
well documented, it is less common knowledge that some TFs also 
exhibit RNA-binding activities. Four TF-encoding genes appear 
on our master list (Table 1 and Supplemental Figure 2A). Because 
of their pronounced DNA-binding properties, one might ask how 
essential the RNA-binding activity is for neoplastic transforma-
tion. The short answer appears to be “not very,” and the surprising 
overall trend appears to be the loss or dysregulation of RNA bind-
ing during the course of neoplastic transformation.

SMARCA4. The transcription activator BRG1, one of the two 
alternative ATP-dependent catalytic subunits of the SWI/SNF 
chromatin remodeling complex (the other being SMARCA2/
BRM), is encoded by SMARCA4 (13). In cancer, SMARCA4 is 
most frequently affected by deep (biallelic) deletions and trun-
cating frameshift mutations, which generally result in loss of 
protein and its function, arguing that SMARCA4 is a tumor sup-
pressor (TS) gene. Moreover, several known hotspot missense 
mutations (including the most common, T910/M/A/R) map 
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ical spacing between ZFs 3 and 4, which could 
abrogate DNA-binding properties of WT1 
and redirect it toward becoming an RBP (26). 
Additionally, the +KTS isoform was shown 
to interact with several RBPs, such as RBM4, 
and localize to nuclear speckles, indicative of 
a potential role in splicing (27).

How are these properties relevant to can-
cer? Like SMARCA4 and SPEN, WT1 is most 
frequently affected by disabling splice site 
and truncating frameshift mutations, with 
“warmspots” at amino acids 369 and 381 
found in acute myelogenous leukemia (AML) 
and several types of solid cancers (Supple-
mental Figure 2A). Based on this clustering, 
one could argue that the tumor-suppressive 
properties of WT1 map to its C-terminal KTS 

insertion, making RNA binding by WT1 irrelevant in cancer cells 
while potentially relevant for its tumor-suppressive activity in nor-
mal cells. Consistent with this idea, an early study reported a rela-
tive increase in the –KTS isoform in breast cancer compared with 
normal tissues (28).

In contrast, in desmoplastic small round cell tumor, there is 
a well-recognized translocation involving WT1 and EWSR1 (29), 
which preserves the KTS alternative splice sites (26). Thus, while the 
–KTS isoform could serve as a TF (for example, for the PDGFA gene; 
ref. 30), the +KTS isoform could still contribute to RNA-centric pro-
cesses such as splicing, as is known to be the case with EWSR1.

EWSR1. The gene EWSR1 encodes EWS, a nuclear protein, 
which is typically grouped with FUS/TLS and TAF15 into the FET 
(formerly known as TET) family of gene expression regulators. 
Interestingly, while they interact with components of the transcrip-
tional machinery and possess well-defined N-terminal activation 
domains (31), they lack classical DNA-binding domains and con-
tain instead conserved RBDs (32, 33), as revealed by the photoac-
tivatable ribonucleoside-enhanced cross-linking and immunopre-
cipitation (PAR-CLIP) technique (34). Each of the FET proteins, 
including EWS, was bound to thousands of transcripts, with a 
large fraction of cross-linked clusters mapping to intronic regions. 
In addition, EWS binds several known splicing factors, suggest-
ing that it could function to couple transcription and splicing (35). 
Additional efforts to profile the EWS-RNA interactome revealed 
its role in the processing of many primary microRNA (pri-miRNA) 
transcripts (36), expanding its reach to noncoding RNAs (37).

Regardless of the normal function of EWS, the EWSR1 gene is 
profoundly altered in several cancers. While it does not accumulate 
somatic mutations or copy number alterations, it is fused with select 
TF genes: the above-mentioned WT1 in small round cell sarcoma 
(reviewed in ref. 26) and ERG or, more frequently, FLI1 in Ewing’s 
sarcoma (38) and various other soft tissue tumors (39). In the pro-
cess of being translocated, EWS inevitably loses its RBD and replac-
es it with a DNA-binding domain from its partner, reconstituting an 
active TF (Supplemental Figure 2A). These hybrid TFs could act by 
a variety of mechanisms, ranging from derepression of E2F target 
promoters (40) to causing R-loop formation in the chromatin, which 
interfere with DNA repair (41). Overall, this DNA binding accounts 
for most, if not all, transforming activity of EWS-FLI1 (42).

to the SNF2 and helicase domains essential for catalytic activ-
ity (14) and are thought to inactivate the enzymatic function of 
BRG1 (Supplemental Figure 2A).

It is possible that these missense mutations affect the RNA-bind-
ing activity of BRG1, but this hypothesis would be hard to test, since 
there is no recognizable sequence-specific RNA-binding domain 
(RBD) and in fact SMARCA4/BRG1 is only known to bind to one 
RNA species: the Xist noncoding RNA (15). The prevalent model is 
that Xist expels BRG1 from the inactive X chromosome and in doing 
so antagonizes the SWI/SNF complex (16). If this model is correct, 
the RNA-binding activity of SMARCA4 might be an impediment to 
its function, rather than something it actively relies on.

SPEN. The split ends protein (also known as SHARP), a pro-
totype member of the family of transcriptional repressors with 
the characteristic SPOC domain, is encoded by SPEN (17). Like 
SMARCA4, SPEN frequently accumulates truncating frameshift 
mutations, suggesting the underlying loss-of-function mecha-
nism of dysregulation in various cancers. Unlike SMARCA4, this 
presumed TS does not accumulate deep deletion or identifiable 
hotspot missense mutations (Supplemental Figure 2A).

Interestingly, murine Spen is also an Xist-binding protein (18–
20), but unlike BRG1, SPEN has four identifiable RNA recognition 
motifs (RRMs) at the N-terminus, suggesting that RNA binding is 
central to its functions. One of these is silencing of endogenous 
retroviruses (ERVs) by recruitment of chromatin remodelers to 
ERV loci (21). However, frameshift mutations seem to be ran-
domly distributed along the length of the gene, suggesting that 
preservation, let alone enhancement, of RNA-binding activity is 
not driving cancer phenotypes.

WT1. The gene WT1 encodes Wilms tumor protein 1, a TF with 
well-recognized DNA-binding features such as Cys2His2 zinc fin-
gers (ZFs). While it plays an important role in development (22), 
the underlying molecular mechanisms are quite complex. It was 
recognized early on that WT1 might be more than a TF (23), owing 
to the existence of distinct isoforms arising from alternative splic-
ing (e.g., 17-codon insertion in exon 5) and additional modifica-
tions such as sumoylation (24). In the context of this discussion, 
the most relevant dichotomy is between the canonical and the 
so-called +KTS isoforms, with the latter showing an insertion of 
Lys-Thr-Ser next to ZF3 (25). This event is thought to alter the crit-

Figure 1. RNA-binding proteins as cancer drivers. Distribution of the key molecular functions of the 
723 genes in the COSMIC Cancer Gene Census (v92, released August 27, 2020). Molecular functions 
were obtained from the UniProt database.
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In summary, of the four proteins profiled in this section, only 
EWS-FLI1 possesses well-documented RNA-binding activity in 
cancer cells. Several papers support the notion that among genes 
dysregulated by EWS-FLI1 at the level of splicing are putative 
oncogenes. However, the most parsimonious explanation is that 
Ewing’s sarcoma pathogenesis is driven not so much by individual 
aberrantly spliced oncogenes, but rather by LoFi splicing affecting 
multiple TSs. This conceptual dichotomy, “death by the smoking 
gun” versus “death by a thousand cuts,” is highlighted in the fol-
lowing section, concerned with splicing factors.

Splicing: from alternative to aberrant
The discovery of highly recurrent mutations in splicing factors 
(SFs) across a variety of tumor types has provided compelling 
genetic evidence for a direct causal relationship between splic-

What about its RNA-binding activity? With the RBD gone, 
EWS-FLI1 can still interact with small nuclear ribonucleopro-
teins (43) and some splicing factors, but it also loses the ability to 
bind to others, including serine/arginine (SR) proteins (44) and 
YB-1 (45), which play important roles in proper exon assembly 
(see below). In addition, a report showed novel RNA-binding 
properties of EWS-FLI1 (46), and a follow-up paper demonstrat-
ed the effect of EWS-FLI1 on alternative splicing — via binding 
both to RNA and to several RBPs, including the COSMIC gene–
encoded DDX5 (47). Several alternatively spliced transcripts 
have putative oncogenic functions, among them the recently 
identified noncanonical ARID1A-L isoform (48). In an interest-
ing twist, the EWS-FLI1 transcript itself is subject to alternative 
slicing, which often disrupts its open reading frame and could be 
deemed a therapeutic vulnerability (49).

Figure 2. Roles of COSMIC genes in RNA metabolism pathways. Listed in boxes are COSMIC Cancer Gene Census genes encoding proteins with RNA-binding 
activities and classified as tier 1 (“documented activity relevant to cancer”) or tier 2 (“less extensive available evidence”). RBPs further classified as drivers by 
cBioPortal are highlighted in red text. Although many RBPs function in multiple processes, each RBP was assigned to one primary step in RNA metabolism: 
transcription, splicing, microRNA biogenesis, nuclear export, folding/turnover, and translation. During transcription, the exact RNA copy of a protein-coding 
gene is synthesized by RNA polymerase II. It typically contains exon and introns; the latter are being continuously removed during splicing, yielding the 
mature messenger RNA (mRNA). Some introns (as well as occasional exons) contain short stem-loop structures that are recognized and excised by the 
Microprocessor complex during early stages of microRNA biogenesis. Both mRNAs and microRNAs are moved to the cytosol via nuclear export. Once in the 
cytosol, mRNAs undergo translation into proteins by the ribosomes; this process is tightly regulated by various RBPs and also by microRNAs, which bind to 
complementary sequences, typically in 3′-UTRs of mRNAs, and affect both mRNA stability and recognition of the 5′ cap structures by ribosomes.
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missense mutations that are localized in the so-called HEAT (Hun-
tingtin, EF3, PP2A, and TOR1) repeat domains, which are thought to 
mediate interactions with other members of the SF3B complex and 
the U2 snRNP (73). There is a tissue-type specificity to the hotspots, 
with K700 most often altered in MDS and R625 most often altered 
in uveal and other types of melanoma (Supplemental Figure 2B); 
however, the biological basis of this difference is unknown. All major 
SF3B1 mutations appear to act similarly to disrupt normal BPS rec-
ognition, resulting in utilization of alternative BPSs and splicing to 
cryptic 3′ sites located a short distance upstream of the canonical 3′ 
splice site (74–76). While the precise molecular mechanism remains 
incompletely understood, mutations may affect protein-protein 
interactions with other members of the SF3B complex or compo-
nents of the spliceosome. Indeed, recent evidence indicates that 
SF3B1 mutations disrupt interactions with the spliceosomal protein 
SUGP1, and SUGP1 depletion is sufficient to phenocopy the splicing 
defects induced by SF3B1 mutants (77). Interestingly, recent analy-
ses suggest that while the splicing errors caused by different hotspot 
mutations are qualitatively similar and impact the same genes, they 
may differ in the magnitude of their effect (60).

What are the functional consequences of SF3B1 mutations 
and the resulting loss of splicing fidelity? As might be expected, 
the use of unnatural splice sites frequently disrupts the reading 
frame of affected transcripts by generating premature termina-
tion codons and causes downregulation via nonsense-mediated 
decay (75). Several studies have identified such downregulated 
genes in SF3B1 mutant cells that may be required to suppress tum-
origenesis, such as BRD9 and MAP3K7 (78, 79). However, con-
tinued expression of mutant SF3B1 appears to be dispensable, as 
targeted degradation of the mutant allele does not affect growth 
of cells in vitro (80). This result suggests that SF3B1 mutations, 
like U2AF1 mutations, may play a more important role in tumor 
initiation rather than tumor maintenance. Could SF3B1 mutations 
then promote cancer by increasing rates of mutagenesis, as has 
been proposed for U2AF1 mutations? In support of such a hypoth-
esis, SF3B1 mutant cells do exhibit elevated levels of DNA dam-
age, defects in DNA damage responses, and increased formation 
of DNA damage–prone structures such as R-loops (81–83). Aside 
from its canonical role in splicing, SF3B1 is also involved in several 
additional functions like 3′ end processing of histone pre-mRNAs 
and PRC1-mediated repression (84). The impact of SF3B1 muta-
tions on these less understood roles and their relevance to cancer 
remains unknown.

SRSF2. The gene SRSF2 encodes a member of the serine/argi-
nine–rich (SR-rich) protein family, which promote exon inclusion 
by binding to exonic splicing enhancer sequences (85, 86). Alter-
ations in SRSF2 are almost exclusively heterozygous missense 
mutations at the P95 hotspot, located adjacent to its single RRM 
domain (Supplemental Figure 2B). SRSF2 binds to an SSNG con-
sensus motif (where S = C or G) with an unusual ability to accom-
modate both C- and G-rich versions of the motif (87). As with 
U2AF1 and SF3B1, hotspot mutations in SRSF2 do not appear to 
be strictly loss-of-function alterations, as phenotypes of Srsf2 
P95H heterozygous mice are distinct from phenotypes of Srsf2 
heterozygous knockout mice (88). Furthermore, relative to wild-
type Srsf2, P95 mutants have higher affinity for CCNG motifs and 
reduced affinity for GGNG motifs, leading to enhanced splicing of 

ing dysfunction and cancer. Here we focus on five mutated SFs 
with the strongest evidence for being driver events (Table 1 
and Supplemental Figure 2B) and discuss their potential roles 
in promoting tumorigenesis. SF gene mutations in cancer are 
the subject of several excellent reviews (12, 50), and a recent 
pan-cancer genomic survey has nominated some additional 
genes awaiting further study (51).

U2AF1. The gene U2AF1 encodes the smaller subunit of the U2 
auxiliary factor (U2AF) heterodimer that is involved in recognition 
of the 3′ splice site (52–54). Alterations in U2AF1 consist predom-
inantly of heterozygous missense mutations at either of the two 
CCCH-type ZF domains involved in RNA-binding (55) (Supple-
mental Figure 2B). They appear to result in distinct splicing effects 
depending on the ZF affected (56, 57). U2AF1 interacts directly 
with the AG dinucleotide at the 3′ splice site, and accordingly, S34 
mutations have been shown to alter preference upstream of this 
dinucleotide, with a bias for C(AG) over T(AG), while Q157 muta-
tions alter preference downstream of the dinucleotide, with a bias 
for (AG)G over (AG)A (56, 58, 59). Surprisingly, single-cell genom-
ic analyses have also discovered rare cases of U2AF1 S34 and Q157 
mutations co-occurring in cis, although any potential cooperative 
effect awaits further characterization (60).

How do missense mutations in U2AF1 cause cancer? It remains 
difficult to predict the functional consequences of most splicing 
changes, and in the case of U2AF1, mutations affect splicing of 
many exons. Cross-linking and immunoprecipitation sequenc-
ing (CLIP-Seq) studies indicate that the U2AF dimer binds to 
86%–88% of 3′ splice sites genome-wide (61, 62). From the wide 
array of affected genes, a number of specific downstream targets 
have been examined that are differentially spliced in the context 
of mutant U2AF1 and produce phenotypic effects. These include 
genes such as ATG7, H2AFY, STRAP, and IRAK4 (63–65). Inter-
estingly, while wild-type U2AF1 is absolutely essential, expression 
of mutant U2AF1 S34F was not found to be required for continued 
proliferation and survival in vitro, arguing against a mutant-spe-
cific “addiction” (63, 66) and in favor of the “death by a thousand 
cuts” model (see above).

In further departure from canonical models, could U2AF1 
mutants act on RNA in a splicing-independent manner or facili-
tate the acquisition of additional genetic alterations at the DNA 
level? Indeed, U2AF1 has been found to bind mRNAs in the cyto-
plasm and act as a regulator of translation, with the S34F muta-
tion resulting in an overall increase in translation (67, 68). Fur-
thermore, expression of mutant U2AF1 has been shown to induce 
DNA damage, originating from increased levels of reactive oxygen 
species (63) or increased formation of R-loops (like EWS-FLI1) 
(69, 70). As ATR is critical for the cellular response to excessive 
R-loops, mutations in U2AF1 also increase sensitivity to ATR inhi-
bition (70), offering a promising therapeutic strategy for SF-mu-
tant cancers. However, it remains unclear how elevated levels of 
DNA damage are involved in the development of myelodysplastic 
syndrome (MDS) and secondary AML, as these diseases typically 
exhibit low overall mutation burdens (71).

SF3B1. The SF3B1 gene encodes the largest subunit of the SF3B 
complex, involved in recognition of the branch point sequence 
(BPS) by the U2 small nuclear ribonucleoprotein (snRNP) compo-
nent of the spliceosome (72). It is mostly affected by heterozygous 
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CCNG motif–containing exons and repressed splicing of GGNG 
motif–containing exons (88). For example, Ezh2 contains a poison 
exon that is included more in Srsf2 mutant cells, leading to EZH2 
protein downregulation. Overexpression of EZH2 partially res-
cued the defect in colony formation of Srsf2 mutant hematopoiet-
ic stem cells, suggesting that it represents a functionally relevant 
downstream target (88). However, the splicing change in EZH2 
was much weaker in a different context (89), and there are like-
ly additional targets responsible for Srsf2 mutant phenotypes. In 
what has emerged as a common theme surrounding SF mutations, 
SRSF2 mutants have also been shown to increase DNA damage via 
elevated levels of R-loops (69, 70). In an interesting twist, howev-
er, mutant SRSF2 is proposed to induce R-loops not via its altered 
splicing activity but via its splicing-independent role in transcrip-
tion (90) and transcriptional pause release (91).

ZRSR2. The ZRSR2 gene encodes a factor essential for the 
splicing of minor U12-type introns (92). In humans, U12-type 
introns are only found in a subset of 700–800 genes and have dis-
tinct features, such as highly conserved 5′ splice sites and BPSs, 
as compared with the much more prevalent U2-type introns (93). 
Mutations in ZRSR2 consist predominantly of loss-of-function 
alterations (94, 95) (Supplemental Figure 2B) and are associated 
with retention of minor U12-type introns, with consistent changes 
observed across different patient cohorts. In comparison, reten-
tion of major U2-type introns in ZRSR2 mutant samples is much 
more variable, suggesting secondary effects from perturbations to 
other SFs or heterogeneous effects from the specific type of ZRSR2 
mutation present (96, 97). Interestingly, not all U12-type introns 
are equally affected by loss of ZRSR2, with a bias for retention of 
introns containing specific features, such as branch points more 
proximal to the 3′ splice site (96, 98).

A recent study combining ZRSR2-regulated splicing analysis 
with genetic screens converged on LZTR1, a regulator of RAS-relat-
ed GTPases. LZTR1 contains a U12-type intron and is downregulat-
ed in response to ZRSR2 loss as a result of increased intron reten-
tion. Importantly, depletion of LZTR1 reverted the self-renewal 
capacity of ZRSR2-knockout hematopoietic stem cells back to wild-
type levels (96). But the question remains: why do cells not select 
for mutations in LZTR1 in the development of MDS or leukemia? 
LZTR1 is mutated in other cancer types like glioblastoma and also in 
the RASopathy known as Noonan syndrome (99, 100), suggesting 
that it is not less prone to genetic alterations. The possibility remains 
that loss of ZRSR2 provides additional fitness benefits, perhaps 
through effects on genes in addition to LZTR1, that in combination 
make it a more potent driver event in MDS and leukemia.

RBM10. The RBM10 gene encodes a ubiquitously expressed 
regulator of alternative splicing with several domains known to 
interact with RNA. As with ZRSR2, mutations in RBM10 are fre-
quently loss-of-function alterations, characteristic of a classic TS 
gene (Supplemental Figure 2B). Multiple CLIP-Seq studies indi-
cate that RBM10 binds to introns at both 5′ and 3′ splice sites, 
with a greater enrichment at 3′ splice sites (101, 102). Although 
the precise mechanism is still unknown, RBM10 appears to pri-
marily mediate skipping of cassette exons, with loss of RBM10 
then resulting in aberrant exon inclusion (101, 102). Additional 
analyses indicate that RBM10 loss also correlates with upregula-
tion of genes that normally show intron retention under wild-type 

conditions, suggesting that RBM10-mediated splicing regulation 
may also act to control gene expression levels (51). Overall, among 
the hundreds of splicing changes observed in RBM10 mutant sam-
ples, it remains unclear which are critical for tumor suppression. 
While several genes have been nominated as potential RBM10 tar-
gets of relevance (103), they have yet to converge on a consistent 
pathway or mechanism. Nevertheless, data from mouse models 
of lung cancer have confidently validated Rbm10’s TS role in vivo 
(104–106), and further studies will begin to reveal the detailed 
mechanisms involved. In addition to binding to protein-coding 
transcripts, RBM10 was also reported to bind some microRNAs 
(107), a class of noncoding RNAs discussed below.

MicroRNA biogenesis: slicing and dicing
Despite their small size (about 21–22 nucleotides), microRNAs 
(miRs) profoundly affect cellular transcriptomes and proteomes 
in worms (108, 109) and humans (110) alike. They typically act 
by pairing with and degrading or inactivating select mRNAs (111). 
In that capacity they can serve as either oncogenes (112, 113) or 
TS genes (114) or act in key oncogenic pathways (115). The intri-
cate biogenesis of miRs involves two class III endoribonucleases, 
DROSHA and DICER, and one accessory protein, DGCR8 (116). 
All three genes are annotated in the COSMIC database (Figure 2); 
however, only DICER1 mutations are considered proven drivers 
(Table 1 and Supplemental Figure 2C).

DICER1. Mutations of DICER1 associated with cancer were 
first described as heterozygous germline alterations in patients 
with familial pleuropulmonary blastoma (PPB), a rare pediatric 
lung tumor. In most PPB families analyzed, frameshift mutations 
preceded the RNase III domains, but no loss of heterozygosity was 
observed (117). Subsequently, recurrent DICER1 mutations, most-
ly somatic but some germline, were described in various germ 
cell–derived tumors (118). Most of them were heterozygous mis-
sense mutations mapping to the metal-binding amino acids within 
the RNase IIIb domain, usually the D1709 residue (Supplemental 
Figure 2C). Predictably, in in vitro reactions, these mutants were 
defective in processing post-DROSHA double-stranded substrates 
(“pre-miRs”) into 22-nucleotide single-stranded mature species, 
and also there was a greater bias for the “passenger” strand at the 
expense of the canonical “guide” strand, which typically performs 
gene silencing functions.

Subsequent cancer profiling studies identified similar mutations 
(and companion genetic alterations in DROSHA and DGCR8) in 
renal Wilms tumors (119, 120), with well-documented detrimental 
effects on miR biogenesis. These and subsequent papers specifically 
demonstrated decreased levels of tumor-suppressive/oncogene-tar-
geting miRs such as let-7 family members in both DICER1- and 
Microprocessor-mutant Wilms tumors (121, 122). Similar genetic 
lesions have now been found in many other cancer types (123).

The frequent retention of the wild-type DICER1 allele 
informed the concept that DICER1 is a haploinsufficient TS whose 
biallelic loss would make cells nonviable. This is in good agree-
ment with genetically engineered mouse models (GEMMs) of 
cancer, where deletion of one copy of the gene — but not both! — 
was found to accelerate tumorigenesis (124). It also agrees with 
the common observation that, as a class, miRs are downregulated 
in cancers (125, 126).
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In addition to this LoFi/“death by a thousand cuts” model, it 
has been proposed that the existence of a recurrent hotspot muta-
tion is more consistent with a more targeted “death by a smoking 
gun” mechanism, wherein, as a result of natural selection, mutant 
DICER would preferentially undermine tumor-suppressive miRs 
and possibly other DICER-dependent small RNAs (123). While 
this model makes intuitive sense, at present there is limited exper-
imental support for it. To complicate the matter, DICER is also 
implicated in non-small-RNA-based processes such as the DNA 
damage response (127). However, the fact that both DICER1 and 
DROSHA/DGCR8 are mutated in the same tumor types argues 
against the importance of non-miR mechanisms. On balance, 
the most parsimonious explanation is that depletion of miRs and 
ensuing overproduction of translatable mRNA trigger neoplastic 
transformation according to the LoFi scenario.

Nuclear export: shuttles with many passengers
Both mRNAs and miRs function mainly in the cytosol. To get there 
they rely, respectively, on the TREX/NFX1 and exportin-5 sys-
tems (128). On the other hand, long noncoding (lnc), small nuclear 
(sn) and nucleolar (sno), and ribosomal (r) RNAs rely instead on 
the exportin-1 protein (XPO1) (129), which is also involved in the 
nuclear-cytoplasmic shuttling of up to 1000 proteins (130, 131), 
including nucleophosmin-1 (NPM1), a key player in the regulation 
of rRNA biogenesis. It is XPO1 and NPM1, bona fide cancer drivers 
(Table 1 and Supplemental Figure 2D), that attest to the importance 
of RNA transport for neoplastic transformation, although conclu-
sive data remain scarce.

XPO1. The protein originally dubbed CRM1 (for chromosomal 
maintenance 1), but now commonly known as exportin-1, is encoded 
by XPO1 (132). Evidence implicating XPO1 in direct RNA binding is 
very limited, one notable example being trimethylguanine-capped 
U3 snoRNA (133). Mutations in the XPO1 gene, specifically the E571K 
hotspot mutation (Supplemental Figure 2D), were first reported in pri-
mary mediastinal B cell and Hodgkin lymphomas and some other B 
cell malignancies (134), at the same time that genetic and pharmaco-
logical targeting of XPO1 proved to have anticancer effects in a GEMM 
of lung cancer (135). Subsequent mechanistic studies focused largely 
on the protein cargoes of XPO1 and led to the identification of a signif-
icant number of nuclear export signal–bearing (NES-bearing) proteins 
redistributed between the nucleus and the cytoplasm in E571K mutant 
versus wild-type cells (136). Based on these data, the authors conclud-
ed that the E571K mutation alters, rather than abolishes, recognition 
of NES in favor of cargoes with negatively charged C-termini; howev-
er, another XPO1 mutation, D624G, appears to impair nuclear export 
overall. Interestingly, certain proteins highly relevant to cancer, such 
as the p53 TS, were retained in the nucleus both upon XPO1 chemical 
inhibition and as a result of the E571K mutation, suggesting the genet-
ic impairment of XPO1 function. Unfortunately, very little is known at 
this point about the impact of these mutations on export of RNAs or, 
for that matter, RBPs like NPM1.

NPM1. Nucleophosmin-1, encoded by NPM1, has several non-
overlapping functions, many of which have to do with regulation of 
the p53 pathway and genomic stability, but its RNA-binding activ-
ity is thought to be associated mainly with ribosome biogenesis 
and nuclear export of rRNAs (137). It is quite frequently mutated 
in standard-risk AML, with the majority of mutations mapping to 

the C-terminal domain encoded by exon 12, thought to be respon-
sible for RNA binding (138) (Supplemental Figure 2D). Most of 
these mutations are frameshifts, resulting in a protein isoform 
with a distinct C-terminal tail (Val-Ser-Leu-Arg-Lys). This amino 
acid sequence constitutes an additional NES, resulting in predom-
inantly cytoplasmic NPM1 (139); predictably, this redistribution 
was later shown to be dependent on XPO1 activity (140). Given 
the multitude of its functions, it is difficult to attribute the effects 
of NPM1 mutation to a particular pathway or process. Absent such 
data, its possible effects on ribosome abundance and mRNA trans-
lation remain a distinct possibility. In support of this notion, several 
cancer drivers from the RBP family function in protein synthesis.

Translation: where things are getting made
As the final stage of the gene expression program, mRNA trans-
lation serves as a convergent point at which the many steps of 
RNA processing collectively determine the amount of protein that 
is produced. Here, we highlight two factors that have recurrent 
mutations in cancer (Table 1 and Supplemental Figure 2E) and 
regulate mRNA translation in complex ways.

DDX3X. The DDX3X gene encodes an ATP-dependent DEAD-
box RNA helicase that plays a role in nearly all steps of RNA metab-
olism (141). Genetic alterations in DDX3X consist of missense and 
loss-of-function mutations. Missense mutations occur mainly in the 
conserved helicase core (Supplemental Figure 2E), made up of two 
RecA-like domains that mediate ATPase and RNA-binding activity 
(141); and studies in both yeast and mammalian cells indicate that 
mutations associated with medulloblastoma are essentially loss-of-
function alleles with impaired enzymatic activity (142–145). Cellu-
lar effects of DDX3X mutants vary and likely depend on context, 
with globally impaired translation in some cases (146) and more 
transcript-specific impaired translation in other cases (147).

DDX3X has a well-described role as an activator of translation 
for mRNAs with long and structured 5′-UTRs (148). Consistent 
with this function, the growth defects seen across a large set of 
DDX3X mutants in yeast correlated best with defects in transla-
tion of structured 5′-UTR–containing mRNAs, rather than with 
global levels of translation (142). Although several studies have 
recently mapped the specific transcripts bound and regulated by 
DDX3X (146, 147, 149), which target genes are especially critical 
for suppressing or driving cancer remains unclear. Mutations in 
DDX3X are particularly frequent in the Wnt and Shh subgroups 
of medulloblastoma, and intriguingly, expression of DDX3X 
mutants potentiated Wnt pathway signaling (150). In mouse 
models of Wnt- and Shh-driven medulloblastoma, Ddx3x knock-
out also increased disease penetrance and reduced tumor laten-
cy (151). Future studies will undoubtedly reveal more about the 
mechanistic link between DDX3X’s role in mRNA translation and 
its function as a TS.

EIF1AX. The gene EIF1AX encodes eukaryotic translation 
initiation factor 1A (eIF1A), a key initiation factor that stimulates 
assembly of the preinitiation complex and scanning of the mRNA 
for the AUG start codon (152, 153). EIF1AX alterations consist 
mainly of substitutions clustered in the first 15 amino acids of the 
N-terminal tail or a recurrent splice site mutation in the C-terminal 
tail that leads to usage of a cryptic splice acceptor and an in-frame 
deletion (Supplemental Figure 2E). Structural studies of the yeast 
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lation of ATF4, which is typically repressed owing to preferential 
initiation at upstream open reading frames (157). The elevated 
levels of ATF4 in the context of mutant EIF1AX are associated 
with activation of mTOR signaling, enhanced MYC stability, and 
an overall increase in protein synthesis (157). Furthermore, muta-
tions in EIF1AX commonly co-occur with RAS mutations, and 
both N-terminal missense mutants and the C-terminal A113splice 
variant increased transformation efficiency in the context of 
oncogenic RAS (157, 158), suggesting that the impact of EIF1AX 
mutants on translation may provide conditions especially favor-
able for RAS-induced oncogenesis.

Conclusions and translational relevance
Even a cursory survey of the literature and existing data sets indi-
cates that most mutations in RBP genes are either deep deletions 
or frameshift mutations, which result in loss of expression and 
function. Based on these observations one could conclude that 

and mammalian preinitiation complexes indicate that residues in 
the N-terminal tail of eIF1A are in contact with both the mRNA 
start codon and the initiator transfer RNA anticodon, allowing 
eIF1A to sense correct codon-anticodon pairing (154, 155). The 
N-terminal tail of eIF1A also interacts with the +4 mRNA posi-
tion adjacent to the start codon, providing additional contextual 
sensing during scanning of the mRNA (154). Although there are 
likely some mutation-specific effects, substitutions in the N-ter-
minal tail of eIF1A as a whole appear to alter start site recognition 
during translation initiation. In yeast, various N-terminal mutants 
of eIF1A exhibit greater discrimination against near-cognate UUG 
start codons and against cognate AUG start codons in “weaker” 
sequence contexts, resulting in reduced initiation at genes pos-
sessing such suboptimal start sites (156).

For the C-terminal A113splice variant observed in thyroid 
cancer, the precise effect on start site recognition is less well char-
acterized. Interestingly, its expression results in enhanced trans-

Figure 3. Consequences of LoFi versus loss-of-function phenotypes. Examples of cancer-driving mutant RBPs with roles in mRNA splicing and microRNA 
biogenesis and associated molecular events. Low fidelity (LoFi) refers to atypical functions of RBPs with hotspot missense mutations, and loss of function 
refers to diminished RBP functions due to heterozygous frameshift mutation or monoallelic deletions. Homozygous losses of RBP genes are often lethal.
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therapeutics, FDA-approved or under clinical development, are 
being used in manners informed by mutations in RBP genes. The 
following two examples illustrate this point.

First, cancers with imprecisely functioning spliceosomes can 
be successfully targeted by direct spliceosome inhibitors such as 
H3B-8800 (164) or inhibition of enzymes that regulate spliceo-
some factors via posttranslational modifications, for example, 
PRMT5 (165) and CLK (166) (reviewed in ref. 50). Notably, both the 
PRMT5 inhibitor GSK3326595 and the CLK inhibitor SM08502 
as well as H3B-8800 are currently in clinical trials for various 
types of cancer (for example NCT04676516, NCT03355066, and 
NCT04676516; ClinicalTrials.gov).

Second, in late 2020, the FDA granted approval for the XPO1 
inhibitor selinexor (in combination with bortezomib and dexa-
methasone) for the treatment of multiple myeloma. Although 
XPO1 mutations have not been found in multiple myeloma, genet-
ic screens have identified it as an essential gene in this very aggres-
sive plasma cell cancer (167). Selinexor is also in phase I/II clinical 
trial in patients with non-Hodgkin lymphomas (NCT03147885), 
some of which do accumulate XPO1 mutations. The outcome of 
this trial should determine whether these mutations serve as pre-
dictive biomarkers — and more broadly, whether mutations in the 
RBP genes can indeed be successfully targeted in the clinic.
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RBPs as a class perform tumor-suppressive roles. This does not 
come as a surprise when considering loss-of-function mutations, 
but hotspot missense mutations are typically viewed as gain-of-
function events. However, a recent experimental study using the 
easy-CLIP technique yielded surprisingly few examples of RBPs 
whose RNA-binding activity was enhanced by cancer-specific 
missense mutations, and those examples are not known to be can-
cer drivers (159). Instead, it appears that in the case of RBPs such 
as DICER1 and SRSF2 (and perhaps U2AF1 and SF3B1 as well), 
hotspot missense mutations do not result merely in impaired func-
tions typical of loss-of-function mutations, but rather result in the 
LoFi phenotype (Figure 3).

Why would RBPs be tumor suppressive, and why would loss-
of-function or LoFi events contribute to cancer? Several distinct 
scenarios might be in play: (a) For proteins with dual affinity for 
DNA and RNA (of which EWS is but one example), loss of RNA 
binding could unmask oncogenic activity of their transactivation 
domains and allow them to partner with canonical transcription 
factors. (b) A variation on this RNA-to-DNA theme is the well-doc-
umented involvement of many mutated splicing factors (as well as 
the “moonlighting” splicing factor EWS-FLI1) in the formation of 
single-stranded R-loops in the DNA, ensuing DNA damage, and 
acquisition of further cancer-driving mutations (160). (c) Anoth-
er way LoFi versions of RBPs could contribute to oncogenesis is 
by increasing protein output, either globally or in a targeted way, 
to support the rapid increase in cell mass (161). Relevant mech-
anisms might include the dysregulated miR pathway, possibly 
nuclear export, and certainly translation itself.

Admittedly, in contrast to gain-of-function mutations in onco-
genes where direct inhibition provides a straightforward and 
beneficial therapeutic strategy, targeting cancers with RBP loss-
of-function and LoFi variants is a more challenging proposition. 
Still, there could be targetable vulnerabilities related to sustained 
DNA damage (162) [scenario (b) above] or the unfolded protein 
response, one direct consequence of increased translation (163) 
[scenario (c) above]. Furthermore, some of the newest cancer 
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