Supplementary Figure 1

CD22

Supplementary Figure 1: Immunohisochemical analysis of CD22+ (left) and lgG4 (right), cells (shown in red and indicated by arrows) in healthy skin, primary and metastatic melanoma lesions. Counterstaining in hematoxylin (blue; Scale bar: $100 \mu \mathrm{~m}$, magnification 10x).

Supplementary Figure 2
$\boldsymbol{\infty}$

Supplementary Figure 3

A

B

D

Supplementary Figure 3: (A) Cytokines secreted in culture supernatants of B cells and PBMCs stimulated with or without A375 melanoma tumour cells were analysed by Luminex bead array analysis. Titres of VEGF, IL-6 and MCP-1, but not of IFN γ, were significantly increased in cultures treated with tumour cells (*** $P<0.001$; ns $=$ not significant $P>0.05$, analysed by using Mann-Withney-Utest, $n=9$). (B) Flow cytometric sorting strategy to isolate A375 tumor cells and PBMCs from co-culture experiments; purified cells were used to examine cytokine expression in Figure 3D and expression of cytokines by PBMC in these cultures is depicted in (C). (D) Flow cytometric sorting strategy to isolate B cells from co-culture experiments described in Figure 3F.

Supplementary Figure 4

Supplementary Figure 4: Immunohistochemical analysis of FcyR distribution was conducted using fresh-frozen sections of human melanoma lesions and visualized using AP (in red). Representative images demonstrate all three families of FcyRs, i.e. FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) widely expressed in melanoma lesions. Main images were captured at 10x magnification (scale bars: $100 \mu \mathrm{~m}$); magnified images were captured at 20x (scale bars: $50 \mu \mathrm{~m}$).

Supplementary Figure 5

Supplementary Figure 5: (A) Design of in vivo model in NOD/scid/ IL-2Ry-- mice to determine antibody-mediated effector functions. (B) Engraftment of human CD45+ immune cells in mouse spleens, evaluated by flow cytometry showed no significant difference in human CD45+ engraftment across treatment groups. (C) Representative flow cytometric gating strategies to identify immune cell subsets within the human $C D 45^{+}$mouse $\operatorname{CD} 45$ gates engrafted in mouse spleens.

Supplementary Figure 6

Distribution of patient cohort

Supplementary Figure 6: Patient distribution based on \% IgG4 IIgGtotal; black dashed line indicates the 75 percentile, used as cut off point for cumulative survival analysis (Figure 8).

Supplementary Table 1: Clinical parameters and disease staging of peripheral blood donors used for ex vivo B cell cultures at the time of sampling (Figures 2 and 3).

Patient ID	Gender	Age	Stage	TNM
M282	F	43	IB	T2a;N0;M0
M285	M	82	IIA	T2b;N0;M0
M286	F	68	IIB	T4a;N0;M0
M287	F	62	IIIA	T2a;N1a;M0
M338	M	72	IIIB	Tx;N2c;M0
M385	M	67	IIIC	Tx;N3;M0
M380	M	41	IIB	T4a;N0;M0
M381	M	57	IB	T1b;N0;M0
M386	F	64	IIIB	Tx;N2;;M0
M394	M	56	IIB	T4a;N0;M0
M396	M	73	IIC	T4b;N0;M0
M397	F	70	IIB	T3b;N0;M0
M401	F	60	IIIA	T2a;N1a;M0
M402	M	50	IIIB	Tx;N1b;M0
M404	F	65	IB	T2b;N0;M0
M405	M	51	IIC	T4b;N0;M0
M408	F	71	IB	T1a;N0;M0
M409	F	78	IIA	T3a;N0;M0
M430	F	78	IIC	T4b;N0;M0
M433	F	48	IIIB	T3b;N2c;M0
M435	M	45	IB	T2a;N0;M0
M437	M	46	IIA	T3a;N0;M0
M438	F	62	IIA	T2b;N0;M0
M443	M	69	IB	T2a;N0;M0
M318	M	60	IB	T2a;N0;M0
M320	F	71	IIB	T3b;N0;M0
M247	F	37	IV	T3b;N0;M1c
M224	F	76	IIB	T3b;N0;M0
M223	M	35	IB	T2a;N0;M0

