CD22

lgG4

Supplementary Figure 1: Immunohisochemical analysis of CD22+ (left) and IgG4 (right), cells (shown in red and indicated by arrows) in healthy skin, primary and metastatic melanoma lesions. Counterstaining in hematoxylin (blue; Scale bar: 100 μ m, magnification 10x).

GAGGTGCAGCTGGTGGAGGGAGGCTTGGTACAGCCTGGGGGGGTCCCTCAGACTCTCTGTGCAGCCTCTGGGATTCACCTTTAGCATCTTATGCATCTTGGG CDR-1 FR-1

∢

JCCCCCAGGCTCCAGGGAGGGGCTGGAGGGCTCCAACTATAGTGGTAGTGCTGATAGCACATACTACGCAGACTCCGGGAGGGCGGCGGCGGCGGCCATCACCATCTCCAGAGA CDR-2 FR-2

CAACTCCAAGAACACGCTGTATTTGCAAATGAACAGCCTGAGAACTGAGGACACGGCTGTGTATTACTGTGCGAAGGGACACTGGCTACGAAGGGGGGGTATGGACGTC I - CDR-3

TGGGGGCCAAGGGACCACGGTCACCGTCACC

മ

CCC	1173 A	01316 -	01861 -		CHC	1173 L	01316 -	01861 -
TCC	S	I	I	l	GTC	\triangleright	I	ı
ACC	H	I	I		AAG	М	I	I
AAG	М	I	I		GAC	Ω	I	I
000	Ċ	ī	I		TAC	₽	ī	ı
CCA	പ	I	I		DIT	Ēu	I	ı
TCC	S	I	I		CCC	പ	I	ı
GTC	\geq	I	I		GAA	н	I	I
TTC	Гщ	I	I		0 CC CC	പ	I	ı
CCC	പ	ī	I		9TG	\triangleright	ī	ı
CTG	Ц	ı	I		ACG	H	I	ı
909 909	Å	I	I		9TG	\geq	I	I
CCC	പ	ı	I	I	DOT.	S	I	ı
TGC	U	I		44	D D L	Μ	I	ı
TCC	S	ı	I	1	AAC	z	ı	ı
AGG	Ц	ı	I		TCA (S	ı	ı
AGC .	S	ı	I		2000	ს	ı	ı
ACC 1	H	ı	I		000	Å	ī	ı
TCC (S	ı	I		1 DIC	ц	ı	ı
3AG 7	ы	ı	I		ACC 2	₽	ī	ı
AGC 7	S	ı	I		AGC C	S	ī	ı
ACA 6	E⊣	ı	I		50	Ċ	ī	ı
000	Å	ı	I		DE	\triangleright	ī	ı
0	Å	ī	I		CAC P	Н	ī	ı
0 DE	ц	I	I		E D D	₽	I	I
E D	IJ	I	I		U U E	Гщ	ī	ı
С	υ	ī	I	I	b D	പ	ī	ı

Ŭ	M173	K01316	P01861
5	¢	ı	ı
O E E	\triangleright	ı	I
CTA	Ц	ı	I
CAG	Ø	I	I
TCC TCC	S	ı	I
TCA	S	ı	I.
GGA	ი	I	I
CTC	Ц	I	I
TAC	Я	ı	ī
TCC T	S	I	I
CEC	Ц	ı	I
AGC	S	ı	ī
AGC	S	ı	ī
0 E E	\land	ı	I
5 DTS	\triangleright	ı	I
ACC (Ð	ı	I
5 DIC	\land	ı	I
E DD	പ	ı	I
CC F	S	I	ī
VGC A	S	ı	I
E CD	S	ı	I
0 9 E	Ц	I	I
GC A	ტ	I	I
CC CC	H	ı	I
AG A	Ø	м	М
Ei D	H	I	I
AC	⊭	ı	ı.

AAG AGA GTT K R V - - - -Ο Ι Ι DID ⊳ AAG ЖΙΙ ACC ы і AGC AAC ZII ω I I 200 ΔІΙ CAC AAG КΙΙ н і GTG AAT ZII ⊳ AAC ZII - DDF υ ATC ы ы K01316 P01861 M173

melanoma patient (M173) indicating that the acquired protein sequence has the highest similarity with IGHG4 Supplementary Figure 2: V_H-D-J (A) and alignment of γ4 constant region (B) amplified by RT-PCR from a (Accession P01861;K01316) analysed using Blast/Uniport (http://www.uniprot.org/blast/uniprot)

Supplementary Figure 2

Supplementary Figure 3: (A) Cytokines secreted in culture supernatants of B cells and PBMCs stimulated with or without A375 melanoma tumour cells were analysed by Luminex bead array analysis. Titres of VEGF, IL-6 and MCP-1, but not of IFN γ , were significantly increased in cultures treated with tumour cells (*** *P*<0.001; ns = not significant *P*>0.05, analysed by using Mann-Withney-U-test, n=9). **(B)** Flow cytometric sorting strategy to isolate A375 tumor cells and PBMCs from co-culture experiments; purified cells were used to examine cytokine expression in Figure 3D and expression of cytokines by PBMC in these cultures is depicted in **(C)**. **(D)** Flow cytometric sorting strategy to isolate B cells from co-culture experiments described in Figure 3F.

Supplementary Figure 4: Immunohistochemical analysis of Fc γ R distribution was conducted using fresh-frozen sections of human melanoma lesions and visualized using AP (in red). Representative images demonstrate all three families of Fc γ Rs, i.e. Fc γ RI (CD64), Fc γ RII (CD32) and Fc γ RIII (CD16) widely expressed in melanoma lesions. Main images were captured at 10x magnification (scale bars: 100 µm); magnified images were captured at 20x (scale bars: 50 µm).

Supplementary Figure 5: (A) Design of in vivo model in NOD/scid/ IL-2Ry^{-/-} mice to determine antibody-mediated effector functions. (**B**) Engraftment of human CD45+ immune cells in mouse spleens, evaluated by flow cytometry showed no significant difference in human CD45+ engraftment across treatment groups. (**C**) Representative flow cytometric gating strategies to identify immune cell subsets within the human CD45⁺ mouse CD45⁻ gates engrafted in mouse spleens.

Supplementary Figure 6: Patient distribution based on % IgG4\IgGtotal; black dashed line indicates the 75 percentile, used as cut off point for cumulative survival analysis (Figure 8).

Supplementary Table 1: Clinical parameters and disease staging of peripheral blood donors used for ex vivo B cell cultures at the time of sampling (Figures 2 and 3).

Patient ID	Gender	Age	Stage	TNM
M282	F	43	IB	T2a;N0;M0
M285	М	82	IIA	T2b;N0;M0
M286	F	68	IIB	T4a;N0;M0
M287	F	62	IIIA	T2a;N1a;M0
M338	Μ	72	IIIB	Tx;N2c;M0
M385	Μ	67	IIIC	Tx;N3;M0
M380	Μ	41	IIB	T4a;N0;M0
M381	Μ	57	IB	T1b;N0;M0
M386	F	64	IIIB	Tx;N2c;M0
M394	Μ	56	IIB	T4a;N0;M0
M396	Μ	73	IIC	T4b;N0;M0
M397	F	70	IIB	T3b;N0;M0
M401	F	60	IIIA	T2a;N1a;M0
M402	Μ	50	IIIB	Tx;N1b;M0
M404	F	65	IB	T2b;N0;M0
M405	Μ	51	IIC	T4b;N0;M0
M408	F	71	IB	T1a;N0;M0
M409	F	78	IIA	T3a;N0;M0
M430	F	78	IIC	T4b;N0;M0
M433	F	48	IIIB	T3b;N2c;M0
M435	Μ	45	IB	T2a;N0;M0
M437	Μ	46	IIA	T3a;N0;M0
M438	F	62	IIA	T2b;N0;M0
M443	Μ	69	IB	T2a;N0;M0
M318	Μ	60	IB	T2a;N0;M0
M320	F	71	IIB	T3b;N0;M0
M247	F	37	IV	T3b;N0;M1c
M224	F	76	IIB	T3b;N0;M0
M223	М	35	IB	T2a;N0;M0