Characterization of the defect in the Na (+)-phosphate transporter in vitamin D-resistant hypophosphatemic mice

N Nakagawa, N Arab, FK Ghishan - Journal of Biological Chemistry, 1991 - Elsevier
N Nakagawa, N Arab, FK Ghishan
Journal of Biological Chemistry, 1991Elsevier
Hypophosphatemic vitamin D-resistant rickets is the most common form of vitamin D-
resistant rickets in man. The hypophosphatemic mouse model (Hyp) is phenotypically and
biochemically similar to the human disease. Biochemically, hypophosphatemia is the
hallmark of this disorder. The cause of the hypophosphatemia is thought to be secondary to
a defect in the renal and/or intestinal Na (+)-phosphate transporter. The current studies were
designed to investigate and characterize the localization of the defect in the Na (+) …
Hypophosphatemic vitamin D-resistant rickets is the most common form of vitamin D-resistant rickets in man. The hypophosphatemic mouse model (Hyp) is phenotypically and biochemically similar to the human disease. Biochemically, hypophosphatemia is the hallmark of this disorder. The cause of the hypophosphatemia is thought to be secondary to a defect in the renal and/or intestinal Na(+)-phosphate transporter. The current studies were designed to investigate and characterize the localization of the defect in the Na(+)-phosphate transporter in this disorder. Phosphate uptake by renal brush border membrane vesicles (BBMV) showed a significant decrease in the slope of the initial rate of phosphate uptake in (Hyp) compared with control mice (0.009 versus 0.013, respectively). The slopes representing initial rates of phosphate uptake by jejunal BBMV were similar in (Hyp) and control mice (0.004 and 0.004, respectively). Kinetics of jejunal Na(+)-dependent phosphate uptake showed a Vmax of 0.63 +/- 0.12 and 0.64 +/- 0.12 nmol/mg protein/15 s in (Hyp) and control mice, respectively, whereas Km values were 0.12 +/- 0.08 and 0.2 +/- 0.11 mM, respectively. Similar kinetic analysis in the kidney showed a Vmax of 0.32 +/- 0.06 and 1.6 +/- 0.1 (p less than 0.01) and Km of 0.07 +/- 0.06 and 0.39 +/- 0.05 (p less than 0.02) in (Hyp) and control mice, respectively. Na(+)-dependent D-glucose uptake by BBMVs of intestine and kidney showed typical overshoot phenomena in (Hyp) and control mice. In order to explore these findings further, Na(+)-phosphate transporter expression from intestine and kidney was accomplished by microinjection of 50 ng of poly(A)+ RNA into Xenopus laevis oocytes. Na(+)-dependent phosphate uptake was expressed 6 days after the microinjection of intestinal and kidney poly(A)+ RNA from control mice. However, expression of the transporter from (Hyp) mice occurred only from the intestine, and not from the kidney. The decrease in the expression of the Na(+)-dependent phosphate transporter was not secondary to accelerated efflux of phosphate or decreased metabolism in oocytes injected with poly(A)+ RNA from (Hyp) mice.(ABSTRACT TRUNCATED AT 400 WORDS)
Elsevier