[PDF][PDF] Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability

G Ince-Dunn, HJ Okano, KB Jensen, WY Park, R Zhong… - Neuron, 2012 - cell.com
G Ince-Dunn, HJ Okano, KB Jensen, WY Park, R Zhong, J Ule, A Mele, JJ Fak, CW Yang…
Neuron, 2012cell.com
The paraneoplastic neurologic disorders target several families of neuron-specific RNA
binding proteins (RNABPs), revealing that there are unique aspects of gene expression
regulation in the mammalian brain. Here, we used HITS-CLIP to determine robust binding
sites targeted by the neuronal Elav-like (nElavl) RNABPs. Surprisingly, nElav protein binds
preferentially to GU-rich sequences in vivo and in vitro, with secondary binding to AU-rich
sequences. nElavl null mice were used to validate the consequence of these binding events …
Summary
The paraneoplastic neurologic disorders target several families of neuron-specific RNA binding proteins (RNABPs), revealing that there are unique aspects of gene expression regulation in the mammalian brain. Here, we used HITS-CLIP to determine robust binding sites targeted by the neuronal Elav-like (nElavl) RNABPs. Surprisingly, nElav protein binds preferentially to GU-rich sequences in vivo and in vitro, with secondary binding to AU-rich sequences. nElavl null mice were used to validate the consequence of these binding events in the brain, demonstrating that they bind intronic sequences in a position dependent manner to regulate alternative splicing and to 3′UTR sequences to regulate mRNA levels. These controls converge on the glutamate synthesis pathway in neurons; nElavl proteins are required to maintain neurotransmitter glutamate levels, and the lack of nElavl leads to spontaneous epileptic seizure activity. The genome-wide analysis of nElavl targets reveals that one function of neuron-specific RNABPs is to control excitation-inhibition balance in the brain.
Video Abstract
cell.com